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On the Nonergodicity of the Transverse Magnetization 
in the Transverse Ising Model 
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The nonergodic behavior exhibited by the transverse spin correlation function 
F ~ 0 ( t  ) of the transverse Ising model obtained as the solution of approximate 
kinetic equations (derived on the basis of R~sibois and De Leener's method), is 
shown to be an intrinsic property of the model and not the result of the 
approximations made in the derivation of the kinetic equations. 
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1. INTRODUCTION 

The transverse Ising model (TIM) is known to give a suitable description of 
systems in which a dominant role is played by a restricted number of 
low-lying energy eigenstates. (m)'3 Order-disorder ferroelectrics (e.g., 
KDP), (3) Van Vleck paramagnets, (4'5) and systems showing a cooperative 
Jahn-Teller phase transition (6) are the most studied systems within the 
TIM. 

The TIM is described by the following spin-1/2 Hamiltonian: 

x 1 V ,~z~z / - / =  -•s4=0- ~ Z q-q--q (1) 
q 

where fa represents the strength of the transverse field and Vq stands for the 
Fourier transform of the interaction between the z-spin-component opera- 
tors. For instance, in the case of order-disorder ferroelectrics, widely 
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studied within the TIM, the eigenstates of the pseudospin operator S z = + 
1/2 can be assigned to two polar configurations (dressed dipoles) with a 
dipole moment in the + z  and - z  directions. For these systems, ~q 
represents the tunneling frequency between the two polar configurations. 

As usual for spin systems, the dynamics of this model is conveniently 
formulated in terms of the dynamical spin correlation functions (CF), 

rq (0 = <ASq(t)aS _q> = <S~ _ - = x ,  y , z  

(2) 

These canonical ( < - . . ) )  averages of the correlations between the fluctu- 
ating "coordinates" 

1 ~eiql~,ASff (3) 

provide an essential picture of the dielectric or magnetic susceptibilities and 
the dynamical form factors for systems described by the TIM. 

Among the studies on the dynamics of the TIM let us mention those in 
which the spin correlation or relaxation functions are obtained (i) by means 
of a perturbation expansion, (2,v) (ii) as numerical solutions of kinetic 
equations derived by the authors, (8-11) and (iii) by means of Mori's contin- 
ued fraction representation (12) applied to these functions. (5' 13~ 

A common result of these studies which cover the whole para region 
( ~  >>. T >1 Tc) ties in the nonergodic behavior of the transverse CF I '~0(t):  

�9 x x  hm F , = d t )  = const (4) 

For instance, the numerical resolution of the kinetic equations for the CF 
obtained for the TIM by using R6sibois and De Leener's method (14) shows 
that, at T = ~ and for 0.3 < f~/V 0 ~< 0.9 (i.e., in the resonant regime (13) for 
the other Fq~), Fq~ 0 approaches a positive plateau value p, 

p = �88 ['1 - exp(-M2/V0) ] (5) 

in the long-time range. ~~ The coefficient ~ depends on the nature of the 
interaction (nearest neighbor, dipolar, or mixed) and on the type of spin 
configuration considered in the calculation. Equation (5) indicates that p 
vanishes in the Ising limit, i.e., when ~2 ~ 0. 

Unfortunately, the transverse CF of the TIM is not related to any 
measurable quantity. Although a test of Eq. (4) could be found via the 
relation (~5,~6) 

lim F,~ o(t) = (1 / fl ) [ X~- ~ - Xq~= ~ 0(0) ] (6) 

where X~ ~ represents the isothermal (thermodynamic) susceptibility and 
Xq~0(0) stands for the static, isolated (Kubo) susceptibility, the situation is 



On the Nonergodicity of the Transverse MagneUzallon 61 

complicated by the fact that the formulation of the transverse electric 
susceptibility in order-disorder ferroelectrics is entirely different from that 
of transverse magnetic susceptibility i n ferromagnetic crystals. 

Indeed, if in both cases the interaction term of the Hamiltonian is 
~ i j  V,~STS/, then the transverse susceptibility in the magnetic case comes 
from the term proportional to SqX=o (or S~=o), whereas in the ferroelectric 
case it comes from the term proportional to Sq= 0 [see Eq. (8) below]. (17) 
This particularity can be illustrated in the case of KDP-type ferroelectrics 
as follows. Let us first recall that, in these ferroelectrics of crystal axes 
(a ,b , e )  denoted below by (N,V,Z), 4 the H bonds nearly lie in the plane ab 
perpendicular to the spontaneous polarization e axis. The polarization is 
essentially due to the displacements of the heavy ions (e.g., K +, pS+ ions in 
KHePO4), which are strongly coupled to the hydrogen ion displacements 
from one side of their bonds to the other, the phase transition being 
triggered by the hydrogen ordering. For instance, to obtain the longitudinal 
susceptibility we assign the quantization z axis of the pseudospin space to 
the crystal Z axis. Namely, for an external field in the ;~ direction we 
should add to the TIM Hamiltonian (1) the term 

t / '  = (7)  

where Pz is the effective value of the Z-axis dipole moment (i.e., essentially 
the contribution of the heavy-ion displacements). On the other hand, to 
obtain the transverse susceptibility one assumes that the pseudospin space 
axis z lies in the crystal plane )~V (ab for KDP) perpendicular to the Z axis. 
Namely, for a field in the )6 direction we should add to Eq. (1) the term 

H '  = -p~E~Sq= o (8) 

where p~ is the effective value of the )~-axis dipole moment (i.e., essentially 
the contribution of the hydrogen-ion displacements). 

In spite of this lack of experimental information about FqX0(t), the 
authors questioned the nonergodicity of S x. This still-open question may be 
expressed as follows. Does the nonergodicity of S x appear only as a result 
of the approximations made in the derivation of the kinetic equations for 
the dynamical CF, or is it an intrinsic property of the three-dimensional 
TIM Hamiltonian (1)? In the following sections we shall examine these two 
aspects of the problem. 

2. THE KINETIC EQUATIONS APPROACH 

Let us consider the kinetic equations for the CF obtained by applica- 
tion of the method of R~sibois and De Leener (~4) to the TIM. (8-]~ These 

4 The crystal axes (,~, v,z) have to be a priori distinguished from the pseudospin axes (x, y, z). 
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kinetic equations give the time evolution, valid in the Weiss limit, (19) of the 
normalized CF Ff ( t ) .  These normalized CF I~a(t) are related to the usual 
CF Fq~(t) [see Eq. (2)] and their equilibrium forms F~a(0) as follows: 

r;~(t) = ~ l~q~(t)r~a(0), a, f l ,7  = x , y , z  (9) 
7 

provided the initial nonequilibrium correlations are neglected. (14) For the 
transverse CF F~x(t) the kinetic equation reads, at any temperature, 

= 2 + f0'd, '  Gq,(C)r /(t - , ') (10) 

The kernels GqXV(t) are nonlinear functionals of different normalized CF 
I~(t): 

= (11) 
n=2 

and appear as power series of a renormalized interaction (8'9) indicated by 
the counting parameter )~. It must be clear that the resolution of Eq. (10) 
requires the simultaneous resolution of similar kinetic equations for all 
other CF F~'~(t) coupled to r~(t) (see Refs. 9, 10 for such a system of 
coupled kinetic equations for the TIM in the region T/> Tc). 

Assuming that the series in Eq. (11) are convergent (as has been 
checked (18) numerically up to order )k 4 for T ~> Tc), we can approximate 
Eq. (11) in the Markov ian  limit by 

taking account of the numerical result 

lim ru( t~ = 0, a = x, y, z (13) 
t--~oo t/ \ I 

Now, from the explicit forms of the kernels GqV(2)(t) reported in the 
Appendix, it is simple but tedious to deduce that at any temperature 

fo~GqV__(o2)(t)dt = O, y = x ,  y , z  (14) 

if one uses the numerical results [Eq. (13)] and 

lim F~fl( t) = O, a = x ,  y (15) 

and the exact  kinetic equations 

r q ( t )  = - a ry~( t ) ,  a = x ,  y , z  (16) 

Consequently, Eqs. (12) and (14) show that Eq. (4) is correct up to O(h2). 
This result has been checked numerically for the temperature range [oo, 
Tc - AT] ,  where AT = 10 deg. (18) 
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It was first suggested that the use of higher order terms in the kinetic 
equations should remove this nonergodic behavior of S~. ~9) Unfortunately 
this suggestion cannot be checked, as the numerical resolution of Eq. (10) 
up to a higher order than )~2 is too prohibitive to be tentatively performed. 
We thus turned to a motion constant approach. 

3. THE MOTION INVARIANT APPROACH 

The nonergodicity of S x has been already demonstrated for the 
one-dimensional, spin- l /2  TIM at any temperature. Mazur (21) has shown the 
nonergodicity of the z component of the magnetization in the one- 
dimensional, spin-1//2, x - y  model of Hamiltonian 

N 

H = [ ( l  + + (1 - y ) s f s , y + ,  - B ST ]  
i = 1  

Since for "r = 1 this model reduces to the TIM, Mazur's result implies the 
nonergodicity of S x in the TIM, Eq. (1), for a linear chain of spin 1/2 

X X  whatever T is. This nonergodicity of Fq=o(t ) has been also obtained as a 
by-product of an exact calculation of the dynamical properties of the 
one-dimensional TIM in the limits T = oo and T = 0. (20) Both results (2~ 
are based on the diagonalization of one-dimensional Hamiltonians and 
cannot be extended to spin configurations of higher dimension, 

To see if the nonergodic behavior of Fq~=o(t), Eq. (4), is an intrinsic 
property of the three-dimensional TIM at any temperature, we use a theorem 
derived by Suzuki. (22) This theorem expresses the time average of a CF (i.e., 
its infinite-time value) in terms of canonical averages involving all the 
constants of motion of the system considered. 

Let us recall the usual definition of a general CF: 

FAB(t) = (AA ( t )AB)  (17) 

and say that a dynamical variable A is ergodic if 

lim FAA(t) = 0 (18) 
t---) r 

Then Suzuki's theorem may be expressed as follows: if {It} are all the 
motion invariants of the Hamiltonian H considered, i.e., [dr, H]  = 0, then 

( (AA)I . ) ( (AB )I .)  
lim F A e(t) = (19) 

/ t = l  

where, without loss of generality, all I t are assumed Hermitian (I~ + = It)  
and orthogonal to one another in the sense that 

(I .I .5  = d..(I~5 (20) 
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XX Now applying this theorem to the transverse CF Fq=o(t), one readily 
gets 

<(AS#o)1 S ~, <(AS;:o)I~> 2 
lim Fq=0(t ) x x  = Z > / ,  (21) 

. = ~  . =  <I)> 
if one confines oneself to any subset {1~} ~= l,m of constants of motion. In 
Eq. (21) we have used the definition 

1 rf(t) = (ASq(t)AS~q> = -~ E(ASi~(t)ASjfl>exp(iqRij) (22) 
~,j 

Equation (21)clearly shows that the nonergodicity of S x in the TIM is 
proved provided there exists at least one motion invariant 11 such that 

X X  lim Fq=0(t ) > (ASq=oll)2/(12} ~ 0 (23) 

It should be specified that such an inequality [here a "corollary" of Eq. 
(19)] was derived and used by Mazur (20 in his treatment of the one- 
dimensional x - y  model mentioned above. 

The simplest subset of motion invariants that can be defined to apply 
Eq. (21) or Eq. (23) to our purpose is 

1~ = (AH)~ (24) 

Then, since 

a (25) ( ( A S ' ~ ) ( ~ / - / ) >  = aB ( S ~  ~ = x,  y , ~  

relation (23) may be cast into (11 = AH) the form 

lim r~_o tn  > N (S x) v~O (26) 
, _ ~  q - ~ , ,  <(~/_/)~> 

Consequently, if ( S  x) is temperature dependent in a given tempera- 
ture region (and for a given spin lattice dimensionality), the transverse spin 
component S x for the TIM is not ergodic in this temperature range. 

Generally (S  x) cannot be evaluated exactly. For instance, in the 
MFA (0) we have O) 

(SX>0 = �89 tanh(fl~/2),  T > T~ (27a) 

(SX)o = ~2/2Vo, T < T~ (27b) 

According to Eq. (27a), Eq. (26) leads to 

inf l imrqLo(t~ oo)~22sech2(fl~2/2), T > T~ (28) 

For the region T < T~ we should take into account at least the first 
correction (S~)1 to the MFA value (S~)0, Eq. (26b). This value (SX)] of 
order Z-x  (Z being the number of interacting nearest neighbors) was 
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calculated by Stinchcombe, (23) 

( S X ) ,  _ a 1 ~ . I  VqR1 co th ( f l%/2 )  

F N 7 [ O~q 

2Vq [ R 1 -- f lF(1 /4  - R 2) 

where 

F 2 = a 2 + (2Vo(SZ)o) 2 

R 1 = F / 2 V  o 

and the RPA pseudospin wave frequency % is defined by 

~q = F 2 - 2a Vo(SX)o 

- R--!-~ ]} %2 (29) 

(30a) 

(30b) 

(30c) 

Equation (29) clearly shows that ( S  x)  ~ (SX)0 + (SX) l  is T dependent in 
the region T < T c. Therefore, up to order Z - l, we have 

lim Fxx(t~ 4= O, T < Tc (31) 
t - - + ~  q ', i 

The rigorous proof of the nonergodieity of S x requires a general 
demonstration either of the property [see Eq. (25)] 

3--~ ( S  x) 4= 0 all T (32) 

or equivalently of the diagonality of S x with respect to the energy [see Eq. 
(25)1. 

A convincing argument about the validity of Eq. (32) may be found in 
the examination of the values of the lower x L and upper x v bounds for 
( S  x) determined by Lain and Bunde. (24) These authors show that 

xv = inf(1/2, T / 4 a )  (33a) 

x L = ~ - l ( ~ L T - -  110/2 ) (33b) 

where ~/~ is the root of the equation 

f(~L) = (2 T/f~2)(2 T~ c - V0) (34) 

with 
f ( x  tanh x) = (tanh x ) / x  (35) 

In Eqs. (33a) and (33b) the unique T-independent bound x U = 1/2 for 
T < T c (see Fig. 1 in Ref. 24) is the MFA result [see Eq. (27b) with the 
necessary phase-transition condition ~2/V o < 1 for the TIM(3)]. As this 
MFA result overestimates ( S  ~) by a T-dependent quantity [see Eq. (29) 
above and Fig. 3 in Ref. 24] we may conclude that, all other bounds of 
( S  ~) being actually T dependent for 0 < T < m, Eq. (32) is valid. 
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x x  In conclusion, we have shown that the nonergodic behavior of Fq=0(t ) 
is an intrinsic property of the three-dimensional TIM at any temperature T. 
It should be added that the determination of all the motion invariants I~ of 
the TIM nonorthogonal to S ~ should lead to the plateau value reached by 
Fq~o(t ) in the long-time limit. Further work in this direction is underway. 

A P P E N D I X  

We report here the explicit forms of the kernels GqV(2)(t) (7 = x, y, z) 
in terms of the normalized CF F~e(t) defined in Eq. (9) and of the following 
equilibrium CF evaluated up to order Z -1 (Z  being the number of 
interacting nearest neighbors): 

to2F 2 
2~2R + (A1) 

Fq~(0) = 4Oaq tanh(~Oaq/2) wz(4oa 2 - 21~Vqw 2) 

Fq+(0) = R VoPR 
2 4~0q tanh(~Oaq/2) 

VoPR Bf~oa 2 2V~P2R + (A2) 
__ 2~ 2 VoP(4ofl 2flVqOO~) 

where 
R = 2(S  x) (A3) 

P = 2 (S  z) (A4) 

In Eqs. (A1) and (A2), % (the RPA pseudospin wave frequency) and F are 
defined in Eqs. (30a) and (30c), and 

~ = (vg F2)e z (AS) 

The expressions of G;Y(z)(t) (T = x, y,a) are  respectively 

4 E GqX(2)(t) = N q 

4 E N q 

2 z z  ~yy ~ z z  V~,Fq,(0) q_q,(t)Fq,(t) 

zz ~zy ~yz Vq Vq_q,rq,(O)rq_q,(l)rq, (t) 

~y ~zx 4 R ]Fq_q,(t)Fq,(t) 

PR4 F~- q'(t)FZqY'(t) } 

4 E q, q_~,{[r,, ( 0 ) -  -a- j q - ~ , ,  ~ , ,  N q, V V ~+ R ]~zy ,tt~yxtt~ 

PR ~,x ~yy } 4 Fq_q,(t)Fq, (t) (A6) 



On the Nonergodiclty of the Transverse Magnetization 67 

4 Gqy(2)( t) = -~ ~ V~I'q;(O)F~Xq,( t )r  q2,( t) 
q' 

4 Vq_q,Fq,(O)F q_q,( t ) r  q, ( t) + ~ ~ v o ,  zz "zx "~ 
IV ~ V q' 

4 R ~ ~ + "~ q~ V~(IFq+(0) - ~-]Fff~-q'(t)FqX(t) 

4 ~zx ~yx + ~ ~ r q ,  gq_q, ([Fq+(O)-- -~  ]Fq_q,(t)Fq,(t) 
q, 

-~  rqy_q,(t)r;y,(t) ) (17) 

~yy ~zz 

F ~yy ~zx R2 ]rq_q,(t)Fq,(t) 
+ L r ~ ' ~ ( ~  - r~_ q,(O) -I" 

- r~,~(o) - r~_~,(O ) - T r ~ - A t ) r A t )  

4 ~] VqVq, z+ R (1 P) rq_q,(t)rq,(t) N q, Fq_q,(0)- -~- 
~y~ R ~ ~ + _~ ~q R I pFq_q,(t) + ~ FffZq'(t) l I'qy'(t) 

4 ~~ R ~ ( t~ ]~yy  ' t (A8) "k- ~ ~ V q ,  -q 'R[  "2 q-q'" /J ~'( ) 

+ 

4 . ~  . . ,  __z(2),. = _ 
~q ~ )  
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